
BNL - 67832

USING A COMMERCIAL MATHEMATICS SOFTWARE PACKAGE FOR

ON-LINE ANALYSIS AT THE BNL ACCELERATOR TEST FACILITY

R. Malone and X.J. Wang
National Synchrotron Light Source
Brookhaven National Laboratory

Upton, New York 11973-5000, USA

June 1999

National Synchrotron Light Source

Brookhaven National Laboratory
Operated by

Brookhaven Science Associates
Upton, NY 11973

Under Contract with the United States Department of Energy

Contract Number DE-AC02-98CH10886

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or
the results of such use of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessary constitute
or imply its endorsement, recommendation, or favoring by the United States Government or any agency
thereof or its contractors or subcontractors. The views and opinions of authors expresses herein do not
necessarily state to reflect those of the United States Government or any agency thereof.

Using a Commercial Mathematics Software Package for On-line Analysis at the BNL
Accelerator Test Facility

R. Malone and X.J. Wang
Brookhaven National Laboratory1

Upton, NY 11973-5000

1 Supported by the U.S. Department of Energy under
contract number DE-AC02-98CH10886

Abstract
By writing both a custom Windows NT dynamic link

library and generic companion server software, the
intrinsic functions of MathSoft’s Mathcad have been
extended with new capabilities which permit direct access
to the control system databases of Brookhaven National
Laboratory’s Accelerator Test Facility. Under this scheme,
a Mathcad worksheet executing on a personal computer
becomes a client which can both import and export data to
a control system server via a network stream socket
connection. The result is an alternative, mathematically
oriented view of controlling the accelerator interactively.

I. INTRODUCTION
Over the past several years, a number of high quality,

commercial software packages for mathematical and
statistical analysis have become available for use on
personal computers. One such package that has gained
considerable popularity is Mathcad, a product of
MathSoft, Inc. [1] Mathcad has distinguished itself
because of its relatively low cost, extensive function
library and ease of use. Its most notable feature is its free
form, worksheet-like user interface where expressions are
entered in two-dimensional, whiteboard-style using
standard mathematical notation and operators. This is in
contrast to say, spreadsheet programs where formulas are
entered in a flat command-line fashion.

MathSoft markets several versions of Mathcad:
standard, professional and professional academic. Only
the professional versions permit users to extend the base
package by adding their own customized functions.
Although primarily designed for the definition of new
mathematical functions, we have demonstrated that the
same expansion capability can be used to provide network
access to remote databases. The result is an enhanced
Mathcad worksheet that can import remote data, use it as
part of calculations and export the result. This technique
has been used successfully to develop new on-line
applications at Brookhaven National Laboratory (BNL)’s
laser/linac research project, the Accelerator Test Facility
(ATF). Such applications are especially attractive to
scientists and engineers since accelerator algorithms can
be expressed in high level notation. Modifications can be
tested almost immediately, as the interpreted worksheet
requires no compilation or linking.

II. OVERVIEW OF ATF CONTROL SYSTEM
The ATF computer control system is built around a

VAX 4200 computer. Data acquisition is via CAMAC
hardware communicating over a 5 MHz byte-serial
highway. All operator displays and the main accelerator
databases have been built using Vsystem [2]. The
system features a point and click, graphical user interface
with more than 800 window displays through which
operators access, control and monitor the accelerator.
Historically, these operator stations were X-terminals
connected by Ethernet but have been replaced by
personal computers running with Microsoft’s Windows
NT Workstation Version 4.0 [3] and X-terminal emulation.
The replacement PCs have superior graphical performance
over the X-terminals with the added benefit of local
execution of application programs , such as Mathcad.
Operators can use both the main control system displays
together with Mathcad application windows without
conflict.

III. IMPLEMENTATION
The Mathcad interconnection software requires two

parts: a client portion for Mathcad on a local PC and a
server application that resides on the main control system.
Together, they carry out a classic synchronous
client/server dialog over a Berkeley-style, network stream
socket connection as shown in Table 1.

The client side is implemented as a Windows NT
dynamic link library (DLL). MathSoft supports creation of
this DLL using C/C++ compilers from Borland, Microsoft,
Symantec or Watcom. The DLL in use at ATF was created
using Microsoft Visual C++, Version 6.

Instructions for creating a user DLL are in the
“\Doc\Mathcad Users Guide” folder of the Mathcad
distribution CD-ROM. MathSoft’s examples illustrate the
creation of regular Windows DLLs using C. If C++ is to be
used instead, we recommended creating a DLL that
includes Microsoft Foundation Classes (MFC), a so-called
regular MFC DLL. Such a library provides a rich set of
classes from which user-created objects can enhance the
Mathcad interface even further by using, for example,
message boxes, file dialogs, etc.

Table 1

Data Flow Between Mathcad Worksheet and Main Control System

PC EXECUTING MATHCAD MAIN CONTROL SYSTEM

Mathcad Worksheet User DLL
 Network

Communication

Mathcad Server Accelerator Database

 • Create network socket
• Bind to known address
• Place socket in passive mode,

listening for requests

• First instance of
Mathcad begins
execution

• Mathcad loads user
DLL(s)
à

• Initialize Windows

sockets
• Obtain DLL instance

handle
• Create user error message

table
ß

• Calculate
worksheet

• atf_host_connect(
) called
à

• Create Windows socket
• Connect to remote host

à

à à à

• Accept connection request

• Return connection status
to Mathcad

ß

ß ß ß

 • Send acknowledgement
message

• Mathcad continues
to execute
worksheet

• atf_put_* () or
atf_get_* ()
called

à

• Send database request

message
à

à à à

• Analyze database request

• Update worksheet
variable(s)

ß ß ß

 • Perform desired operation
à

• Send acknowledgement

message
ß

• Database read/write
• Return status
ß

• Mathcad continues
to execute
worksheet

• atf_host_disconnec
t called
à

• Shut down and close
socket
à

à à à

• Close link and prepare for
new connection

As MathSoft provides no guidance on how to build an
MFC DLL, users wishing to implement their own libraries
may find remarks based on ATF experience useful:

• Use the Microsoft Application Wizard to create a
project for a statically linked regular MFC DLL.

• Include the Mathcad header file mcadincl.h as part
of the precompiled header file stdafx.h

• Add code to the InitInstance member of the
application:

- Initialize Windows sockets by calling
AfxSocketInit()

- Obtain the DLL instance handle by calling
AfxGetInstanceHandle()

- Define the Mathcad error message table and
create user functions as in the Mathcad
documentation.

• Override the ExitInstance() member of the
application to shutdown and close any socket
created during worksheet execution.

• Create any network sockets as globals since
unloading of functions can cause the socket to go
out of scope resulting in unexpected
disconnection from the network.

• Protect user functions from unexpected MFC
assertions by adding the macro call
AFX_MANAGE_STATE(AfxGetStaticModuleState
()) at the beginning of every user function.

• Add the path and filename for the user DLL to the
project settings, under the Debug / Other DLLs
section. This will enable use of the debugger
concurrently with Mathcad.

• Use Microsoft’s CSocket class for network
sockets as it provides a convenient encapsulation
of regular Windows sockets.

Reference [4] provides more details on many aspects of
dynamic link libraries.

Once placed in the appropriate folder, Mathcad
automatically will load the DLL as part of its own
initialization. User functions may then be called from
within a Mathcad worksheet.

Construction of the control system server is essentially
standard network socket programming. See [5] for detailed
explanations and code samples.

Although remote procedure calls (RPCs) would work
equally well, our implementation uses sockets since the
server-side code can be reused to support interoperability
with other applications, notably National Instruments’
LabVIEW [6] which has built-in support for sockets.

IV. SAMPLE APPLICATION
At present, the ATF DLL contains some 25 functions

for access to the accelerator databases. These include
operations for network connections, reading and writing
data of various types including real, integer, string, binary,
etc., time delay and messages boxes. Figure 1 shows a
Mathcad worksheet that calculates the emittance of ATF’s
photoelectron beam. The procedure is carried out by
varying the current in a particular quadrupole magnet and
measuring the size of the resulting beam spot from a
digitized video frame. The Data Acquisition section of the
worksheet contains function calls (prefixed by “atf_”) that
access the remote control system databases.

When executed,

atf_host_connect
(str2vec (“bnlatc.atf.bnl.gov”), 305, passwd)

attempts creation of a network connection to the control
system on port 305 and submits a password for access.
The str2vec() forces Mathcad to convert the host name
string to a vector of ASCII values. This is needed since all
user functions must pass (and return) only numeric scalars
or arrays. This is not a particular hardship since the
underlying DLL functions can cast appropriately. A return
value of zero from the atf_host_connect() call indicates a
connection has been established successfully. Should the
attempt fail, the command would be highlighted in red, an

error message displayed and further calculation of the
worksheet suspended.

The next two statements

ptr_mps := atf_get_chix
(str2vec(“DARL29;CDS;SET_CURRENT_SETPT”))

and

ptr_sigma := atf_get_chix
(str2vec(“FRAME_DB::FGR1;RSX;SIGMA_X”))

retrieve database channel indices (pointers) for the
quadrupole magnet power supply and the beam spot size
as measured by the video frame grabber, respectively.
These pointers are used in all subsequent function calls
that access the database. The strings in quotation marks
are the database channel names which have the general
form database_name::channel_name. If omitted, the
database name defaults to “RT_DATABASE”.

The worksheet then loops over the range of
quadrupole current setpoints, repeatedly executing the
three statements

status ← atf_put_real (ptr_mps, setpt)

status ← atf_sleep (1000.)

sigma ← atf_get_real(ptr_sigma)
 * pixel_cal_horiz /1000

which write a new magnet power supply setpoint to the
database, suspend worksheet execution for one second,
and finally, read the spot size measured by the frame
grabber, scaling it from pixels to millimeters. The back
arrow is Mathcad’s assignment operation inside program
blocks.

Termination of the network connection occurs when
calling atf_host_disconnect (0) =, the zero argument and
equals sign being needed to force function evaluation.

Note that the Calculation section of the worksheet has
been programmed using two-dimensional, standard
mathematical notations.

V. PERFORMANCE / REAL-TIME ISSUES
The non-determinism of Ethernet timing combined with

Mathcad’s interpreted (vs. compiled) worksheet preclude
use of this technique for hard real time problems. Using a
400 MHz Pentium II PC with Windows NT Workstation
communicating to the main VAX over a 10 MHz Ethernet,
we have measured the time needed to write a single real
value to the database at ~35 msec. This includes the time
to write the value, update the remote database and receive
a return acknowledgment message. This figure probably
could be improved, but we have made no particular
attempt to do so since this throughput is adequate for
many of ATF’s needs.

As ATF is a pulsed machine, the more serious concern
is that a set of measurements imported into a worksheet
did indeed come from the same beam pulse. To address
this issue, a set of list handling functions is defined. The
general call sequence is:

atf_list_define (list_number)

atf_list_add (pointer_1)

atf_list_add (pointer_2)
.

.

.

atf_list_add (pointer_n)

atf_list_end (list_number)

atf_list_send (list_number)

Figure 1: Sample Application - Emittance Measurement

Figure 1 (continued): Sample Application – Emittance Measurement

Atf_list_send(list_number) send a list of database
pointers to the remote host which keeps a copy, indexed
by the list number. When worksheet calculations require
measurements from a single beam pulse, a call to
atf_list_execute (list_number) is made to signal the
control system to collect the desired items during one
beam cycle and to return them to Mathcad as a real vector.
As the main host is fully aware of the facility timing cycles,
it can guarantee all requested items have come from the
same beam pulse.

VI. CONCLUSIONS
We have successfully integrated Mathcad into the on-

line analysis tools in use at the Accelerator Test Facility.

The technique we have described need not be limited to
network access of remote databases. Similar dynamic link
libraries could be constructed, for example, to read and
analyze the data from local instrumentation connected
directly to a personal computer by IEEE-488 or RS-232
interfaces.

VII. ACKNOWLEDGEMENT
We thank our colleague, V. Yakimenko, who

enthusiastically tested some of the early versions of our
library.

VIII. REFERENCES
[1] MathSoft, Inc., 101 Main Street, Cambridge, MA

02142-1521

[2] Vista Control Systems, Inc., 176 Central Park Square,
Los Alamos, NM 87554

[3] Microsoft, Inc., One Microsoft Way, Redmond, WA
98052-6399

[4] M. Blaszczak, Professional MFC with Visual C++ 5,
Chicago: Wrox Press, Inc., 1997, pp. 579-614.

[5] D.E. Comer and D.L. Stevens, Internetworking With
TCP/IP Volume III: Client-Server Programming and
Applications, BSD Socket Version, Englewood Cliffs:
Prentice Hall, 1993, pp. 75-91.

[6] National Instruments Corporation, 11500 North Mopac
Expressway, Austin TX 78759-3504

